全新视觉提示方法SoM 让GPT-4V看的更准、分的更细(全新的视觉)
研究人员推出了一种新的视觉提示方法 Set-of-Mark(SoM),它可以让 OpenAI 多模态大模型 GPT-4V 在视觉内容理解方面有了质的提升。GPT-4V 是一种基于 GPT-4的多模态模型,可以同时处理文本和图像,并生成多种类型的输出。
然而,GPT-4V 在细粒度 visual grounding(输入是图片和对应的物体描述,输出是描述物体的 box)能力相对较弱,或者尚未发挥出来。为了解决这个问题,研究人员提出了 SoM 方法,它可以让 GPT-4V 在不需要任何微调或额外数据的情况下,完成各种细粒度视觉任务。
论文地址:https://arxiv.org/pdf/2310.11441.pdf
论文主页:https://som-gpt4v.github.io/
SoM 的核心思想是使用交互式分割模型(例如 SAM)将图像划分为不同粒度级别的区域,并在这些区域上添加一组标记(mark),例如字母数字、掩码(mask)、框(box)。使用添加标记的图像作为输入,以解决上述问题。
研究人员认为,这种方法可以让 GPT-4V 更好地理解图像中的物体和空间关系,并且可以利用 GPT-4V 的生成能力来产生文本之外的输出,如掩码或框。
研究人员在多个视觉任务上评估了 SoM 的效果,包括开放词汇图像分割、参考分割、短语关联和视频对象分割。他们使用不同的分割工具来提出图像区域,并使用简单的 prompt 工程来引导 GPT-4V 生成所需的输出。他们还使用了「分而治之」(divide-and-conquer)的策略来运行实验和评估,即对于每个实例,他们使用新的聊天窗口,这样一来,评估期间就不会出现上下文泄露了。
研究人员将 SoM 与以下模型进行比较:预测坐标的 GPT-4V 基线模型、SOTA 专用模型和开源 LMM。结果显示,SoM 可以让 GPT-4V 在各个数据集上取得了优于专用模型和其他开源多模态模型的性能。特别是,在 COCO 和 ADE20K 上的开放词汇图像分割任务上,SoM 的零样本性能接近微调后的 MaskDINO,并大幅优于 OpenSeeD。
在 RefCOCOg 上的参考分割任务上,SoM 击败了 PolyFormer 和 SEEM 等专用模型以及 Shikra、LLaVA-1.5、MiniGPT-v2和 Ferret 等最近的开源 LMM。在 Flickr30K 上的短语关联任务上,SoM 实现了比 GLIPv2和 Grounding DINO 更强的零样本性能。在 DAVIS2017上的视频对象分割任务上,SoM 实现了优于其他专用视觉模型的最佳追踪性能(78.8J&F)。
研究人员还进行了消融研究,探讨了标记类型和真值掩码对 SoM 的影响。结果表明,添加额外的框可以显著提升性能,而使用真值掩码可以将参考分割的性能提升14.5%(mIoU)。这些结果表明了 SoM 的有效性和灵活性,以及 GPT-4V 在细粒度视觉任务上的潜力。